Astronomy 101

The stars at night

Are big and bright
Deep in the heart of Texas
http://www. crcamp. coni/asitronomy
Assemblage copyright (C) 2007-2011 Clyde R. Camp
All photos belong to original phatographer

Astronomy 101
http://www.crcamp.com/astronomy101.pdf

Assemblage copyright © Clyde R. Camp
All photos belong to original photographer

Videos

Size of Universe http://www.youtube.com/watch?v=b0lxbzgwW7I
Comparative Star Sizes - http://www.youtube.com/watch?v=6X47B9x670E

Planetarium Programs

For the PC - Stellarium - http://www.stellarium.org/
Lots of others, Mac and PC, at http://astro.nineplanets.org/astrosoftware.html
Point \& View Applications and Web Sites
For android - star3map or Google Sky Map
For iPhones - Starwalk or Starmap
Moon phase - http://aa.usno.navy.mil/imagery/moon
Local sidereal time - http://tycho.usno.navy.mil/sidereal.html
Sun/Moon rise/set times and lots of other astro info -
http://www.usno.navy.mil/USNO/astronomical-applications
Constellation Photos - http://www.allthesky.de/
Hubble photographs - http://hubblesite.org
Messier Catalog - http://messier.seds.org/

Agenda

- The Sun and other Stars
- Where is North?
- Night Sky
- Zodiac Constellations
- Other Constellations
- Other Deep Sky Objects
- Resources

Agenda

Solar Physics

A Star (including our sun) is a balancing act

- It begins as a cloud of gas (mostly Helium) compressed by gravity
- Gravity continues to try to collapse it - increasing pressure \& heat
- At some point fusion begins to push back out and a star is born
- Hydrogen \rightarrow Helium + Energy - good for billions of years
- As a star burns up its hydrogen fuel, gravity starts io win
- New energy, derived from converting Helium into oxygen, neon, carbon and other elements, keeps the star alive - good $100^{\circ} \mathrm{s}$ of millions of years
- At some point gravity starts converting things to iron - good for decades
- Iron cannot undergo fusion to higher elements
- When the iron core gets big enough the collapse starts
- This is the end - gravity always wins

Solar Physics

The End - Kaboom!

- If big enough, at the end the star may Explode (Nova or Super-nova)
- Imner core collapses fast (seconds - 40,000 mps - .25c)
- Collapse converts Iron into Neurron core - 6000 times temp of Sun
- Outer layers collapse slower and rebaund off Neutron core
- Collision energy blows off a shell of elements higher than iron on periodio table
- Reminats join other remnants to (eventually) form another star
- Ali elements greater than iron were formed from exploding stars
- Carl Sagan - "We are made from star stuff"
- But ... our sun is not big enough to go Nova
- Less than 1.38 Solar Masses \rightarrow White Dwarf
$-1.5-9$ Solar Masses \rightarrow Nova \rightarrow Neutron Star
More than 10-25 Solar Masses \rightarrow Super Nova \rightarrow Black Hole
Life Cycle of the Sun

The end of a star

Star Stuff

[^0]
Terminology

- Light Year - the distance light travels in one year $-\sim 5.8$ trillion miles
- Oni sun is abont 8 light-minotes away
- Parsec $-\sim 3.26$ Light Years or 19 trillion miles
- Ecliptic - the apparent path of the sun through the celestial splyere over the conne of a year. The moon and planet paths also lie ronghly on the ecliptic
- Milky Way - Our Gaslaxy as seen edge on
- Zodiac - a band traditionally 9 degrees either side of ecliptic containing constellations that heve had similar namesmemaings since Sumerian times
- Celestial Sphere - is an imaginary sphere of arbitrarily large radius, concentric with the Earth and rotatiog upoo the same axis.
- Solar Time - time measured by position of the suo. 24 bours in a solar day.
- Sidereal Time - time measured by the position of the stars. The sidereal day is shorfer than the solar day by about 4 minutes due to the novement of the earth arond the sun. 23 hours and 56 minites in sideregl day

Terminology

The difference between Astronomy and Astrology :
Astronomy is a science - Astrology is not
But ... Astrology was the early version of Astronomy about 2000-2500 years ago when it was used to predict the seasons before there were calendars (or months or weeks or hours or minutes!). And Astronomy uses the same names of stars and constellations that the Astrologers used.
Like cartoons, Astrology can be fun to play with, but it shouldn't be taken too seriously
Astronomy is not like coin or stamp collecting where only a few can afford to have the best. Astronomy is the only hobby where every gets to see exactly the same thing as the professionals.

You don't need a fancy telescope to have fun. Most of the pictures you'll see today did not use a telescope. Although a telescope or binoculars help, you can see an awful lot with just your eyes if you know what you're looking for.
The stars you can see tonight are the same ones that professional astronomers are looking at. And they are the same ones that Aristotle and Noah and Mohammad and Jesus saw. Most of the names haven't even changed throughout recorded history (and some of them are pretty funny!)

Stellar Objects (what is that in the sky)

- Star - a 'sun' like our own - may be much larger or hotter or both
- Constellation - A set of (50-100) stars that is internationally formally recognized as a 'group' delineating some object (usually an animal) for convenience

The 'sinape' is purely accidental and would not be the same viewed from another star system

- Asterism - a smaller grouping of stars that is known informaily by various names (ex. The Big Dipper in England is known as "The Plow")
- Nebula - interstellar cloud of dust, hydrogen, helitm and other ionized gases Can be TiUGE - The Ragle Nebula is well oyer 40 light years across
- Globular Cluster - spherical collection of stars orbiting a galactic core
-. Vowe as a unit, bound tagether by gravity
- Many wore fomed in the enily fanation of the universe and are netal poor

Contain any number of stars - small have 100 , lageer have 100 goo

- Galaxy - gravitationally bound system of stars, stellar remnants and dust
- 10 million te 100 trillion stars
- Our Milley way is medium sized with only $200-400$ billion

Stellar Objects

$$
\begin{aligned}
& \text { Magnitude } \\
& \text { (how bright is that thing) }
\end{aligned}
$$

- Relative or Apparent Magnitude - how bright a star appears under optimum seeing conditions by an observer on Earth
- - affected by pollution, light pollution, atmospheric conditions and humidity
- Higher magnitude numbers are dimmer stars
- Sun is -26, Moon is -12.6, faintest star visible to naked cye is 6 , faintest star visible in good binoctulars 8.5 , faintest star visible to huge telescopes is about 30
- Absolute Magnitude - how bright a star actually is at a standard distance (10 parsecs)

Magnitude Definitions

The Star we Know

Relative Star Sizes

is Really Quite Small

Relative Star Sizes

Relative Star Sizes

The 16 Brightest Stars

	Apparent Magnitude	Proper Name
0	-26.74	(Sun)
1	-1.46	Sirius (a CMa)
2	-0.72	Canopus (a Car)
3	-0.04 var	Arcturius (a Boo)
4	-0.01	$\begin{aligned} & \text { Rigil Kent (a Cen } \\ & \text { A) } \end{aligned}$
5	0.03	Vega (a Lyr)
6	0.12	Rigel (β Ori)
7	0.34	Procyon (a Clui)
8	0.42 var	Eetelgeuse (a Ori)
9	0.5	Achernar (a Eri)
10	0.6	Hadar (3 Cen)
11	0.71	Capella A (a1 Aur)
12	0.77	Altair (α Ag\|)
13	0.85 var	Aldebaran (a Tau)
14	0.96	Capella B (a2 Amit
15	1.04	Sprisa (a Vir)
16	1.09 var	Antares (a Scorpio)

Distance (LY)	Location 0.00016
9	Constellation)
310	Canis Major
37	Puppis
4	Eootes
25	Centarus
770	Lyra
11	Orion
640	Canis Miner
140	Orion
530	Centanus
42	Aurigas
17	Acguilla
65	Taurus
42	Auriga
260	Virgo
600	Scorpius

The larger the number, the fainter the star

And Where are We?

- In the Orion Arm of the Milky Way Galaxy
- 300-400 Billion Stars
- 90,000 light years in diameter \& 10,000+ light years thick

Our sun is in a galaxy called the Milky Way. It is a spiral galaxy about 100 thousand light years in diameter with about 300-400 billion million stars. Because our solar system is way out on one edge instead of the center, we see the milky Way as a hazy band of light on a dark night.

Milky Way from Utah

Milky Way from Canada

Milky Way from South Texas

How many stars can you see?

(not as many as you think and only 15 brighter than magnitude 1)

	Absolutely perfect desert or mountain sky with no moon and no light polution		Rural area with low light polution	Suburban area moderate/mild light polution	Urban area severe light polution
Limiting Magnitude	6.5 6.3	6.0	5.0	4.0	3.0
Stars visible at any one point on earth at any one time (double this over the course of a year)	$\sim 4000 \sim 3000$	~ 2400	~ 750	~ 250	~ 80
Milky Way	Clearly visible - can leave a shadow	Often mistaken for a cloud	Barely visible	Nope	Nope
Orion Nebula	Actually looks like Sm	Nebula	Discernable as not a star	looks like faint star	Nope
Andromeda Galaxy 2.5 MLY - furthest distance a person can see	Clearly visible as faint oval	Visible as smudge	Need Binoculars	Need binoculars	Nope

Find the Big Dipper - the Pointers and The North Star (Polaris)
Big Dipper is not a Constellation - it is an asterism
Wasn't the North star 10,000 years ago
Won't be 10,000 years from now
But it is at this moment in geologic time
Due to precession that takes 26,000 years per cycle
in 14,000 AD, Vega in Lyra will be the polestar
3000 years ago it was Thuban (Alpha Draconis)
Two end stars in the dipper are moving one way - all others moving in opposite direction
in 100,000 years the bowl will be almost flat and the end handle star almost at 90 degrees to Mizar.

What's visible in January at 22:30
Artwork

Historic artwork print

Find the dipper and the north star

Find the dipper and the north star

Find the dipper and the north star

Find the dipper and the north star

Find the dipper and the north star
Trick screen - dipper below landscape

September 242108 Allen Texas - 28mm lens, 30 seconds f3.5

Same photo enlarged to show Mizar and star trails caused by earth rotation in 30 seconds

Other Pointers

Other Pointers
Arc to Arcturus,
Spike to Spica
Back of bowl points to Regulus in Leo
Front of bowl points to Polaris in Ursa Minor
Bottom of bowl points to Castor in Geminii

Constellation Lines

Constellation Artwork

Astrological month orientations

$$
\begin{aligned}
& \text { Aries artwork } \\
& \text { Hamal (Alpha) - The head of the Sheep } \\
& \text { Sheratan (Beta) - The Sign of Spring }
\end{aligned}
$$

Aries Lines

M33-Triangulum Galaxy

Distance 3000 (kly)
Apparent Brightness 5.7 (mag)
Apparent Dimension 73×45 (arc min)

Aries photo

Taurus Artwork

Asterisms - Hyades , M45-Pleiades (7 sisters, only 6 show)
Both Hyades and Pleiades are true star clusters held together by gravity

Aldebaran (Bright one of the Follower) - 40 times larger than our sun - AKA The Eye of the Bull

- First of the four Royal Stars of Persia (others are Antares, Regulus, Fomalhaut)

El Nath (Al Nath) - upper horn - the Butting One

M1-Crab Nebula - remnants of 1054 nova recorded by Chinese is next to lower horn tip

Dark Sky Long-term exposure photo
Note - Pleiades and Color of aldebaran - Bright one of the follower or Eye of the Bull

- two small nebulae in upper left

Crab Nebula next to bright white star in upper left

- Exploded in 1054 - recorded by chinese and arabic astronomers
- cast shadow in full daytime for two days then faded away
- visible to naked eye for two years, then faded away
- Remnant re-discovered in 1731 and again in 1758
- Designated M1 by Charles Messier as the first item of non-Interest in what is now known as the Messier Catalog
- illuminated by a pulsar: a neutron star as massive as the Sun but with only the size of a small town.
- The Crab Pulsar rotates about 30 times each second.
- Visible in a pair of binoculars (Magnitude 8) but great in Hubble photos

M1 - Crab Nebula in Taurus

Pleiades

Where most constellations and star groups are an accident of perspective, the Pleiades are actually a local group traveling in the same direction. Stars are still forming

In Japanese the constellation is called Subaru and the Car's logo is a stylized depiction of the asterism.

Mentioned by Chaucer and by name in the bible (Job 9:9 and 38:31, and Amos 5:8)

Taurus Photo

Geminii Artwork

Castor (alpha) - The Horseman - (white- the upper star) the 23 Brightest Star in the sky
Pollux (beta) - The Boxer - (yellow - the lower star) the $17^{\text {th }}$ brightest star in the sky

M35 - Large Open Cluster, Size: 28.0', Magnitude: 5.1

NGC 2174 - MonkeyHead Nebula - Emission, Reflection Nebulae, Size: $25^{\prime} \times 20^{\prime}$

M35 - Large Open Cluster, Size: 28.0', Magnitude: 5.1

NGC 2174 - MonkeyHead Nebula - Emission, Reflection Nebulae, Size: $25^{\prime} \times 20^{\prime}$

Geminii Photo

Bright 'star' is a planet -Jupiter

Cancer (The Crab)

Cancer Artwork

Cancer difficult to see the Beehive (manger, jewelbox) Asterism is easy to find with a pair of binoculars or naked eye in dark sky - due west of Leo's nose.

Contains M44 - Praesepe (Latin for "manger") - a star cluster mentioned in literature from 260 BC

M44 Praesepe

The Beehive or Manger Asterism contains Praesepe - a star cluster mentioned in 260BC literature

M44-Praesepe - is a globular cluster containing about 50 stars held together by gravity

Note star colors - they really are red, blue and yellow. Color directly corresponds to temperature.

Cancer

Cancer Photo

Leo Artwork

The Sickle Asterism - also known as The Yellow Dragon in ancient China

Regulus (Alpha) - The Little King or Lion's Heart - Second of the Royal four of Persia

Denebola (Beta) - the Lion's Tail

Leonid Meteor Shower in November

Regulus (Alpha) - The Little King or Lion's Heart - Second of the Royal four of Persia
Denebola (Beta) - the Lion's Tail

$M 96><M 95$

M65-Distance 35000 (kly), Visual Brightness 9.3 (mag), Apparent Dimension 8x1.5 (arc min)
M66 - Distance 35000 (kly), Visual Brightness 8.9 (mag) , Apparent Dimension 8x2.5 (arc min)

M95 - Distance 38000 (kly), Visual Brightness 9.7 (mag) , Apparent Dimension 4.4×3.3 (arc min)

M96 - Distance 38000 (kly), Visual Brightness 9.2 (mag) , Apparent Dimension 6x4 (arc min)
M105 - Distance 38000 (kly), Visual Brightness 9.3 (mag), Apparent Dimension 2.0 (arc min)

Leo Photo

Virgo Artwork

Spica (Alpha) - the Ear of wheat that Virgo holds in her left hand $16^{\text {th }}$ Brightest star - about 10 times bigger than the sun

M60>> $<$ M58

M 49 ?

M61>

M61 showing Nova from 2008

M104 - Sombrero galaxy - Dist. 50000 (kly), Visual Brightness 8.0 (mag), 9x4 (arc min) http://www.youtube.com/watch?v=GBB2xQe8nMw visual tour

M 104 - Sombrero Galaxy under different wavelengths of light

Blue - x-ray
Green - optical
Red - Infrared

M87 in Virgo cluster

Hubble Ultra Deep Field

- In constellation Fornax in Southern hemisphere
- Low density of bright nearby stars
- Field equivalent to 1 mm square of paper held 1 -meter away
- 1/13-millionth of total sky area
- 11 days of actual exposure time using Director"s Discretionary Time
- What this is
- ~ 10,000 Galaxies
- 13 billion light years away
- so this light left 13 billion years ago
- universe is only ~ 13.75 billion
- So this is only $400-800$ million years after the Big Bang

The Hubble Ultra-Deep Field (HUDF) is an image of a small region of space in the constellation Fornax, composited from Hubble Space Telescope data accumulated over a period from September 24, 2003, through to January 16, 2004. It is the deepest image of the universe ever taken, ${ }^{[1]}$ looking back approximately 13 billion years (between 400 and 800 million years after the Big Bang), and it will be used to search for galaxies that existed at that time. The HUDF image was taken in a section of the sky with a low density of bright stars in the near-field, allowing much better viewing of dimmer, more distant objects. The image contains an estimated 10,000 galaxies. In August and September 2009, the Hubble's Deep Field was expanded using the infrared channel of the recently attached Wide Field Camera 3 (WFC3). When combined with existing HUDF data, astronomers were able to identify a new list of potentially very distant galaxies.[2]

Hubble Ultra Deep Field

Enlargement of portion of Hubble UDF

Virgo Photograph

Libra Artwork

Only Zodiac sign that is not some sort of animal
Zuben el Genubi (alpha) - The Southern Claw (from Scorpius)
Zuben Eschamali (beta) - The Northern Claw (from Scorpius)

NGC 5897

Libra Photo

Scorpius (Scorpio) Artwork

Deep Sky Objects

Antares

M4

NGC 6357

Nebulosity around NGC 6231

NGC 6231

Scorpius Photo

Sagittarius Artwork

teapot

Darksky Nebulosity

Deep Sky Objects - M8 \& M20

M8 - Lagoon Nebula

M16 Eagle Nebula

The Fairy

Pillars of Creation

Sagittarius Photo

Capricory (Capricornus) Artwork

< NGC 7009
M.73> <M72

M 30 >
M 75 >

Deep Sky Objects

M75 - Actually in Sagittarius

M30-

NGC-7009 - Saturn Nebula (Actually in Aquarius as are Globular Clusters M72 and M73)
The layers of the Saturn Nebula give a complex picture of how this planetary nebula was created. The above picture, taken in April 1996, allows a better understanding of the mysterious process that transformed a low-mass star into a white dwarf star. A computer model indicates that the central star of NGC 7009 first expelled the green gas that now appears barrel shaped. This green gas now confines stellar winds flowing from the central star, creating a jet which forms the ansae that appear in red at the tips. Much remains unknown, including why the gas has not become turbulent.

Capricornus

Capricorn Photo

Aquarius Artwork

Water jar Asterism

The Helix Nebula is the closest example of a planetary nebula created at the end of the life of a Sun-like star. The outer gasses of the star expelled into space appear from our vantage point as if we are looking down a helix. The remnant central stellar core, destined to become a white dwarf star, glows in light so energetic it causes the previously expelled gas to fluoresce. The Helix Nebula, given a technical designation of NGC 7293, lies about 650 light-years away towards the constellation of Aquarius and spans about 2.5 light-years.

Aquarius Photo

Pisces Artwork

Another really big constellation spread out all over
Circlet Asterism - is the easiest part to find and is the head of one of the fish

Pisces Circlet

<M 74

Deep Sky Objects

M74

Pisces Photo

Andromeda Artwork

Known as the "The little cloud" to the Persian astronomer Abd-al-Rahman Al-Sufi, who described and depicted it in 964 AD
2.5 Million LY away and moving towards us at 300 km per second - collision in about 3 billion years - effects in about 1 billion

225, 000 LY diameter - At least twice the number of stars than the milky way 1 trillion vs 400-600 billion

Deep Sky Objects

M31 (NGC 224, the famous Andromeda Galaxy) is the nearest large galaxy to our own Milky Way galaxy. It is so bright that it is easily seen by naked eye as a faint fuzzy patch of light in the northern part of Andromeda. It forms part of the Local Group of galaxies along with our Milky Way, its satellite galaxies, and M33. Of all members of the Local Group M31 is considered to have the closest external resemblance to the Milky Way, thus it is often referred to as a 'sibling galaxy'. Also seen in this photograph are M31's satellite galaxies M110 (below) and M32 (above) - in this respect it is also similar to the Milky Way, with M110 corresponding to the Large Magellanic Cloud and M32 corresponding to the Small Magellanic Cloud.

Known as the "The little cloud" to the Persian astronomer Abd-al-Rahman Al-Sufi, who described and depicted it in 964 AD
2.5 Million LY away and moving towards us at 300 km per second - collision in about 3 billion years - effects in about 1 billion

225, 000 LY diameter - At least twice the number of stars than the milky way 1 trillion vs 400-600 billion

Orion Artwork

Light Polluted photo

Dark sky photo

Betelgeuse \& Rigel w/ Great Orion Nebula

Orion/Taurus/Aries group

Great Orion Nebula

Horsehead Nebula

[^0]: Star Stuff

