Astronomy 101

The stars at night
Are big and bright
Deep in the heart of Texas
hup-//wwww.creamp.com/astronomy
semblage copyright © 2007 -2011 Clyde R. Camp
All photos belong to original photographer

Agenda

- The Sun and other Stars
- Where is North?
- Night Sky
- Zodiac Constellations
- Other Constellations
- Other Deep Sky Objects
- Resources
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solar Physics
A Star (including our sun) is a balancing act
It begins as a cloud of gas (mostly Helium) compressed by gravity
Gravity continues to try to collapse it - increasing pressure \& heat
At some point fusion begins to push back out and a star is born
Hydrogen \rightarrow Helium + Energy - good for billions of years
As a star burns up its hydrogen fuel, gravity starts to win
New energy, derived from converting Helium into

\qquad
oxygen, neon, carbon and other elements, keeps
the star alive - good 100 's of millions of years At some point gravity starts converting things to firon - good for decades

- ron campo undergo fusion to tigigler elemmens - When the ion core gels bije enought hhe collipse starts

This is the end - gravity always wins
\qquad
\qquad
\qquad

The End - Kaboom!
If big enough, at the end the star may Explode (Nova or Super-nova)
Inner core collapses fast (seconds $-40,000 \mathrm{mps}-.25 \mathrm{c}$)
Collapse converts Tron into Neutron core - 6000 times temp of Sun
Outer layers collapse slower and rebound off Neutron core
Collision energy blows off a shell of elements higher than iron on periodic
table
Remnants join other remnants to (eventually) form another star
All elements greater than iron were formed from exploding stars

- Carl Sagan - "We are made from star stuff"

But ... our sun is not big enough to go Nova
Less than 1.38 Solar Masses \rightarrow White Dwarf
$1.5-9$ Solar Masses \rightarrow Nova \rightarrow Neuron Suar
More than 10-25 Solar Masses \rightarrow Super Nova \rightarrow Black Hole
Life Cycle of the Sun
....••••0\%

Eillions of Years (approx)

Star Stuff

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Terminology

Light Year - the distance light travels in one year - - 5.8 trillion miles
Parsec - 3.26 Light Years or 19 trillion miles
Ecliptic - the apparent path of the sun through the celestial sphere over the
coutse of a year. The moon and planet patis also lie roughly on the ccliptic
Milky Way - Our Galaxy as seen edge on

- Zodiac- a band traditionally 9 degrees cither side of ecliptic containing

Celestial Sphere - is an imaginary sphere of arbitrarily large radius, concennio
with the Earth and rotating upon the same axis.

- Solar Time - time measured by position of the sun. 24 hours in a solar day.
- Sidereal Time - time measured by the position of the stars. The sidereal day is shorter than the solar day by about 4 minutes due to the movement of the earrl
around the sun. 23 hours and 56 minutes in a sidereal dav around the sun. 23 hours and 56 minutes in a sidereal day
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stellar Objects

(what is that in the sky)

- Star - a 'sun' like our own - may be much larger or hotter or both
- Constellation - A set of (50-100) stars that is internationally formally
 convenience
- The 'shipe' is purely accidectalal and wolld not be the smme viewed from anolier star system \qquad
- Asterism - a smaller grouping of stars that is known informally by various
- Nebula - intersellar cloud of dust, hydrogen, helium and oiher ionized gases - Can be Hucge - The Eage Nemal is well over su irgh years scross

Globular Cluster - spherical collection of stars orbiting a galactic corc \qquad

Galaxy - gravitationally bound system of stars, stellar remmants and dust
\qquad

Magnitude

(how bright is that thing)

- Relative or Apparent Magnitude - how bright a star \qquad appears under optimum seeing conditions by an observer on Earth
- affected by pollution, light pollution, atmospheric conditions and humidity
Higher magnitude numbers are dimmer stars
Sun is -26 , Moon is -12.6 , faintest star visible to naked eye is 6 , faintest star visible in good binoculars 8.5 faintest star visible to huge telescopes is about 30 \qquad
- Absolute Magnitude - how bright a star actually is at \qquad a standard distance (10 parsecs)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The 16 Brightest Stars \qquad

Apparent
Magnitude
$\frac{\text { Magnitude }}{-26.74}$
$\frac{\text { Proper Name }}{(S u n)}$
(Sun)
Sirius (a CMa)
Sirius (a CMa) Canopus (a Car) Arcturus (a Boo)
Rigil Kent (a Cen Rigil Kent (a Cen Vega (a Lyr) Rigel (β Ori)
Procyon (CMi) Procyon (a CMi)
Betelgeuse (a Ori) Betelgeuse (α Ori)
Achernar (a Eri)
Hadar (β Cen)
Capella A (a1 Aur)
Altair (a Aql)
Aldebaran (a Tau
Capella B (a2 Aur)
Spica (a Vir)
Disamece (in)
0.000016

9
310
37
(Constellation)
Canis Major
Puppis
Bootes
Bootes
Centaurus
Lyra
Orion
Orion
Canis Minor
Orion
Eridanus
Centaurus
Auriga
Acuilla
Taurus
Auriga
Virgo
Scorpius
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How many stars can you see?
(not as many as you think and only 15 brighter than magnitude 1)

	Absolutely perfect desert or mountain sky with no moon and no lightit polution		Rural area with low light polution	Suburban area moderate/mild light polution	Urhan area severe light
Limiting Magnitude	6.5 6.3	6.0	5.0	4.0	3.0
Stars visible at any one point on earth at any one time (double this over the course of a year)	-4000 -300	-2400	-750	~ 250	-80
Milky Way	Clearly visible - can leave a shadow	Often mistaken for a cloud	Barely visible	Nope	Nope
Orion Nebula	Actualy looks like Smal	11 Nebula	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Discernable as } \\ \text { not a star } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { looks like faint } \\ \text { star } \end{array} \\ \hline \end{array}$	Nope
Andromeda Galaxy 2.5 MLY . furthest distance a person can see	Clearly visible as faint oval	Visible as smudge	Need Bincoulars	Need binceculars	Nope

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Hubble Ultra Deep Field

- In constellation Fornax in Southern hemisphere
- Low density of bright nearby stars
- Field equivalent to 1 mm square of paper held 1-meter away
- 1/13-millionth of total sky area
- 11 days of actual exposure time using Director's Discretionary Time
- What this is
- ~ 10,000 Galaxies
- 13 billion light years away
- so this light left 13 billion years ago
- universe is only ~ 13.75 billion
- So this is only $400-800$ million years after the Big Bang

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

